Bài luyện thi môn Toán vào Lớp 10 - Câu 1 đến 8 - Nhóm 1 (Có đáp án)
Bạn đang xem tài liệu "Bài luyện thi môn Toán vào Lớp 10 - Câu 1 đến 8 - Nhóm 1 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
bai_luyen_thi_mon_toan_vao_lop_10_cau_1_den_8_co_dap_an.docx
Nội dung text: Bài luyện thi môn Toán vào Lớp 10 - Câu 1 đến 8 - Nhóm 1 (Có đáp án)
- Câu 1. Một chiếc cầu được thiết kế như hình vẽ bên có độ dài AB 40m , chiều cao MK 3m . Hãy tính chiều dài của cung AMB . Lời giải Vẽ đường tròn O chứa ¼AMB ; gọi N là giao điểm của MK và O . MN 2R M K là trung điểm của AB . AK KB 20m · · 0 · · » A B Ta có: AKM BKN 90 ; MAK BNK (cùng chắn MB ) K AKM ∽ NKB g g O KA KM KA.KB KM.KN KN KB 409 20.20 3 2R 3 R m 6 N Xét AOK , ta có: AK 20 120 sin ·AOK OA 409 409 6 ·AOK 1704' ·AOB 3408' sđ ¼AMB 3408’ 409 . .3408' Độ dài cung AMB : 6 40,6m 1800 Câu 2. Một bóng đèn huỳnh quang dài 1,2m, đường kính của đường tròn đáy là 4cm, được đặt khít vào một ống giấy cứng dạng hình hộp. Tính diện tích phần giấy cứng dùng để làm một hộp. (Hộp hở hai đầu, không tính lề và mép dán). Lời giải Ống giấy có dạng hình hộp chữ nhật có đáy là hình vuông cạnh 4cm và chiều cao 1,2m 120cm . Diện tích phần giấy dùng làm hộp: S 4.4.120 1920cm2 . Câu 3. Rađa của một máy bay trực thăng theo dõi chuyển động của một ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô thay đổi phụ thuộc vào thời gian được cho bởi công thức v 3t 2 – 30t 135 (t tính bằng phút, v tính bằng km / h ). a/ Tính vận tốc của ôtô khi t 5 phút. b/ Tính giá trị của t khi vận tốc ôtô bằng 120km / h (làm tròn kết quả đến chữ số thập phân thứ hai) Lời giải a/ t 5 v 3.52 30.5 135 60km / h b/ v 120km / h 120 3t 2 30t 135 3t 2 30t 15 0
- t1 5 2 5 9,47 phút t2 5 2 5 0,53 phút 2 Câu 4. Người ta muốn lát gạch một nền nhà hình chữ nhật có chu vi 32m, có chiều rộng bằng chiều 3 dài. Gạch dùng để lát là hình vuông có chu vi 8dm. Tính số gạch cần dùng. Lời giải Nửa chu vi nền nhà: 32 : 2 16 m. Gọi x m là chiều rộng của nền nhà. ĐK: 0 x 8 . Gọi y m là chiều dài của nền nhà. ĐK: 8 y 16 x y 16 x 6,4 Ta có hệ phương trình: 2 (nhận) x y y 9,6 3 Diện tích nền nhà: 6,4.9,6 61,44m2 6144dm2 . Độ dài cạnh viên gạch: 8: 4 2dm Diện tích viên gạch: 2.2 4dm2 . Số gạch cần dùng: 6144 : 4 1526 viên gạch. Câu 5. Biết rằng 200g một dung dịch chứa 50g muối. Hỏi phải pha thêm bao nhiêu gam nước vào dung dịch đó để được một dung dịch chứa 20% muối? Lời giải Gọi x g là số gam nước cần đổ thêm. ( x 0 ) 50 Ta có: 0,2 x 50 (nhận) x 200 Vậy lượng nước cần thêm là: 50 gam. Câu 6. Em An đi bộ từ nhà (địa điểm A) đến trạm xe buýt (địa điểm B) cách nhà 100m. Cùng lúc đó có một chiếc xe buýt chạy từ trạm xe buýt (địa điểm C) đến trạm xe buýt (địa điểm B) với vận tốc gấp 10 lần vận tốc của em An và gặp em An ở trạm xe buýt (địa điểm B). Hỏi nhà em An cách trạm xe buýt (địa điểm C) bao nhiêu mét? Biết rằng đường từ nhà em An đến trạm xe buýt (địa điểm B) là đường thẳng, đường từ trạm xe buýt (địa điểm C) đến trạm xe buýt (địa điểm B) cũng là đường thẳng và A· BC 600 . Lời giải A C B H
- Vì thời gian xe buýt đi từ C đến B và An đi từ A đến B là như nhau, mà vận tốc xe buýt gấp 10 lần vận tốc của An nên: BC 10AB 10.100 1000m Kẻ AH BC , ta có: 1 BH AB.cos B 100. 50m BH BC BH 1000 50 950m 2 3 AH AB.sin B 100. 50 3m 2 Khoảng cách từ nhà An (địa điểm A ) đến trạm xe buýt C : 2 AC AH 2 HC 2 50 3 9502 954m *Cách 2: Dùng định lí hàm số cô-sin. Câu 7. Một vườn cỏ hình chữ nhật ABCD có AB 40m , AD 30m . Người ta muốn buộc hai con dê ở hai góc vườn A, B . Có hai cách buộc: Cách 1: Mỗi dây thừng dài 20m . Cách 2: Một dây thừng dài 30m và dây thừng kia dài 10m. Hỏi với cách buộc nào thì diện tích cỏ mà hai con dê có thể ăn được sẽ lớn hơn? Lời giải Diện tích cỏ hai con dê có thể ăn là dạng hai hình quạt có số đo cung cùng bằng 900 .
- Trường hợp 1: Mỗi dây thừng dài 20m . R1 R2 20m Diện tích cỏ mà hai con dê có thể ăn: R2.90 R2.90 .202.90 202.90 S S S 1 2 200 m2 1 2 360 360 360 360 Trường hợp 2: Giả sử dây thừng cột dê ở A dài 30m , dây thừng cột dê ở B dài 10m . R1 30m, R2 10m Diện tích cỏ mà hai con dê có thể ăn: R2.90 R2.90 .302.90 102.90 S S S 1 2 250 m2 1 2 360 360 360 360 Vậy dùng hai sợi dây 30m và 10m thì diện tích cỏ hai con dê ăn sẽ nhiều hơn. Câu 8. Một người đi bộ và một vận động viên đi xe đạp cùng khởi hành từ một địa điểm A và đi cùng chiều quanh một công viên có độ dài 1800m. Vận tốc của người đi xe đạp là 21,6 km/h, của người đi bộ là 5,4 km/h. Khi người đi bộ đi được một vòng thì gặp người đi xe đạp mấy lần? Tính thời gian mỗi lần gặp nhau bao nhiêu phút và địa điểm mỗi lần gặp nhau cách A bao nhiêu mét. Lời giải 21,6km / h 6m / s ; 5,4km / h 1,5m / s Gọi t s thời gian 2 người gặp nhau tính từ lúc xuất phát. Ta có: Quãng đường mỗi người đi được đến lúc gặp nhau. S1 v1.t 6t ; S2 v2.t 1,5t Vì hai người đi cùng chiều nên: S1 S2 1800 6t 1,5t 1800 t 400 s Thời gian t’ người đi bộ đi hết 1 vòng. 1800 t’ 1200 s 1,5 Vì sau 400 s thì hai người gặp nhau 1 lần nên khi người đi bộ đi hết 1 vòng thì hai người gặp nhau 3 lần. * Lần 1: Gặp nhau tại điểm C cách A : 1,5.400 600 m * Lần 2: Gặp nhau tại điểm D cách C : 1,5.400 600 m . Khi đó, D cách A 600 m * Lần 3: Gặp nhau tại điểm A