Đề tham khảo tuyển sinh Lớp 10 môn Toán học - Năm học 2018-2019 - Trường THCS Lý Tự Trọng (Có đáp án)

doc 4 trang Bích Hường 19/06/2025 260
Bạn đang xem tài liệu "Đề tham khảo tuyển sinh Lớp 10 môn Toán học - Năm học 2018-2019 - Trường THCS Lý Tự Trọng (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docde_tham_khao_tuyen_sinh_lop_10_mon_toan_hoc_nam_hoc_2018_201.doc

Nội dung text: Đề tham khảo tuyển sinh Lớp 10 môn Toán học - Năm học 2018-2019 - Trường THCS Lý Tự Trọng (Có đáp án)

  1. ĐỀ THAM KHẢO TUYỂN SINH 10-NĂM HỌC:2018-2019 1 Bài 1: Trong mặt phẳng tọa độ Oxy cho hàm số y x2 cĩ đồ thị (P) 4 và đường thẳng (D): y = – x a)Vẽ (P) và (D). b)Viết phương trình đường thẳng (D1) song song với (D) và cắt (P) tại điểm cĩ hồnh độ là –2. Bài 2: Cho phương trình x2 – (2m + 1)x + m2 + 2 = 0. (1) a) Tìm m để phương trình (1) cĩ nghiệm x1, x2. b) Tìm m để hai nghiệm x1 và x2 thỏa mãn hệ thức : 3x1x2 – 5(x1 + x2) + 7 = 0. Bài 3: Một người đi xe máy lên dốc cĩ độ nghiêng 4 0 so với phương ngang với vận tốc trung bình lên dốc là 9km/h. Hỏi người đĩ mất bao lâu để lên tới đỉnh dốc ? Biết đỉnh dốc cao khoảng 15m. Bài 4: Cho rằng diện tích rừng nhiệt đới trên Trái Đất được xác định bởi hàm số S = 718,3 – 4,6t trong đĩ S tính bằng triệu hec-ta, t tính bằng số năm kể từ năm 1990. Hãy tính diện tích rừng nhiệt đới vào các năm 1990 và 2018. Bài 5: Một vé xem phim cĩ giá 60.000 đồng. Khi cĩ đợt giảm giá,mỗi ngày số lượng người xem tăng lên 50%, do đĩ doanh thu cũng tăng 25%. Hỏi giá vé khi được giảm là bao nhiêu? Bài 6: Bạn An dùng kính lão của ơng nội (một loại thấu kính hội tụ) để làm thí nghiệm tạo ảnh một cây đèn cầy trên tấm màn. Cho rằng vật sáng cĩ hình đoạn thẳng AB đặt vuơng gĩc với trục chính của một thấu kính hội tụ, cách thấu kính đoạn OA = 16cm. Thấu kính cĩ quang tâm là O và tiêu điểm F, cĩ tiêu cự OF = 12cm. Vật AB cho ảnh thật A’B’ (cĩ đường đi của tia sáng được mơ tả như hình vẽ). Tính xem ảnh cao gấp bao nhiêu lần vật. Bài 7: Nhân dịp lễ Quốc tế phụ nữ 8/3, bạn Hoa địng đi siêu thị mua tặng mẹ một cái máy sấy tĩc và một cái bàn ủi với tổng số tiền là 700 000 đồng. Vì lễ nên siêu thị giảm giá, mỗi máy sấy tĩc giảm 10%, mỗi bàn ủi giảm 20% nên Hoa chỉ trả là 585 000 đồng. Hỏi giá tiền ban đầu (khi chưa giảm) của mỗi cái máy sấy tĩc, bàn ủi là bao nhiêu? Bài 8: Cho tam giác nhọn ABC (AB< AC) nội tiếp đường trịn (O) cĩ đường cao AD. Vẽ DE  AC tại E và DF  AB tại F a) Chứng minh A· FE A· DE và tứ giác BCEF nội tiếp. b) Tia EF cắt tia CB tại M, đoạn thẳng AM cắt đường trịn (O) tại N (khác A). Chứng minh MN . MA = MF . ME c) Tia ND cắt đường trịn (O) tại I. Chứng minh OI  EF.
  2. HƯỚNG DẪN GIẢI: Bài 1: a)Vẽ (P) và (D) Lập bảng giá trị của (P) và (D) Vẽ (P) và (D) trên cùng 1 hệ trục Oxy b)Viết phương trình đường thẳng (D1) song song với (D) và cắt (P) tại điểm cĩ hồnh độ là -2. Do (D1) // (D) nên (D1) cĩ dạng pt: y = -x + m. Gọi A là điểm mà (D1) cắt (P) tại điểm cĩ hồnh độ là –2. 2 x2 2 Ta cĩ: A (P): y y 1 A(–2; –1) 4 A 4 Ta lại cĩ: A (D1): y = –x + m -1 = – (–2) + m m = –3. Vậy pt (D1) : y = –x – 3. Bài 2 : 2 2 a) Điều kiện để phương trình cĩ hai nghiệm x1 và x2 là : ’ = (2m + 1) – 4(m + 2) 0 7 4m2 + 4m + 1 – 4m2 – 8 0 4m – 7 0 m 4 x x 2m 1 b) Theo hệ thức Vi-ét, ta cĩ 1 2 và từ giả thiết 3x x – 5(x + x ) + 7 = 0 2 1 2 1 2 x1x2 m 2 Suy ra :3(m2 +2) – 5(2m +1) +7 = 0 3m2 + 6 –10m –5 +7 = 0 3m2 –10m + 8 = 0 m 2 thỏa mãn 4 m không thỏa mãn 3 Vậy với m = 2 thì phương trình cĩ 2 nghiệm x1 và x2 thỏa hệ thức 3x1x2 – 5(x1 + x2) + 7 = 0. Bài 3: ABC (Â = 900), AB = 15m, ACB = 40. * Xét ABC vuơng tại A, ta cĩ : BC AB :sin C 15:sin 40 215 m
  3. s 0,215 43 * Thời gian người đĩ lên đến đỉnh dốc là : t (giờ) v 9 1800 Vậy sau 1 phút 26 giây người đĩ lên tới đỉnh dốc Bài 4: Diện tích rừng nhiệt đới vào năm 1990 S = 718,3 – 4,6.(1990-1990) =718,3 hec-ta Diện tích rừng nhiệt đới vào năm 2018 S = 718,3 – 4,6.(2018-1990) = 589,5 hec-ta Bài 5: Gọi x là số lượng khán giả đi xem phim lúc chưa giảm giá ( x ¥ * ) 60000x (đồng) là số tiền thu được lúc chưa giảm giá Số lương khán giả sau khi giảm giá là: x.150% Số tiền thu được sau khi giảm giá là: 60000x.125% 60000x.125% Vậy giá tiền số vé lúc giảm: 50000 (đồng) x.150% Bài 6: Trong OAB cĩ AB // A’B’ (cùng vuơng gĩc AA’) A'B' OA' (hệ quả của định lí Thales) (1) AB OA Trong OCF cĩ OC // A’B’ (cùng vuơng gĩc OA’) A'B' A'F OA' OF (hệ quả của định lí Thales) (2) . OC OF OF Mặt khác ta cĩ: AB = OC (3) OA' OA' OF OA' OA' 12 Từ (1) , (2) và (3) OA' 48cm (4) OA OF 16 12 A'B' OA' 48 Thay (4) vào (1): 3 A'B' 3.AB AB OA 16 Vậy ảnh gấp ba lần vật. Bài 7: Gọi x (đồng) là giá tiền ban đầu của một cái máy sấy (0 < x < 700 000) y (đồng) là giá tiền ban đầu của một cái bàn ủi (0 < y < 700 000) Tổng giá tiền ban đầu của một cái máy sấy tĩc và một bàn ủi là 700 000 đồng nên: x + y = 700 000 Tổng số tiền được giảm là: 10%x + 20%y = 700 000 - 585 000 0,1x + 0,2y = 115 000 Ta cĩ hệ phương trình : x y 700000 x 250000 0,1x 0,2y 115000 y 450000 Vậy giá tiền ban đầu của một cái máy sấy tĩc là 250 000 đồng, một cái bàn ủi là 450 000 đồng. Bài 8:
  4. A N E F O C M B D I a) Tứ giác AEDF nội tiếp do tổng hai gĩc đối bằng 1800 A· FE A· DE Mà: A· CB A· DE (do cùng phụ C· DE ) Nên: A· FE A· CB tứ giác BCEF nội tiếp. b)Chứng minh được MN . MA = MB . MC và MB . MC = MF . ME MN . MA = MF . ME c) Chứng minh được 5 điểm A, N, F, D, E cùng thuộc một đường trịn A· ND A· FD 900 A· NI 900 AI là đường kính của (O) 3 điểm A, O, I thẳng hàng Mặt khác chứng minh được OA  EF. Vậy OI  EF.