Toán tuyển sinh vào Lớp 10 - Chuyên đề 3: Giải bài toán bằng cách lập phương trình - Năm học 2019-2020 (Có đáp án)
Bạn đang xem tài liệu "Toán tuyển sinh vào Lớp 10 - Chuyên đề 3: Giải bài toán bằng cách lập phương trình - Năm học 2019-2020 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
toan_tuyen_sinh_vao_lop_10_chuyen_de_3_gia_bai_toan_bang_cac.docx
Nội dung text: Toán tuyển sinh vào Lớp 10 - Chuyên đề 3: Giải bài toán bằng cách lập phương trình - Năm học 2019-2020 (Có đáp án)
- Câu 1. (Tuyển sinh tỉnh Nghệ An năm 2019-2020)Tình cảm gia đình có sức mạnh phi trường. Bạn Vì Quyết Chiến - Cậu bé 13 tuổi qua thương nhớ em trai của mình đã vượt qua một quãng đường dài 180km từ Sơn La đến bệnh viện Nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35km/h. Tính vận tốc xe đạp của bạn Chiến. Lời giải Đổi 1 giờ 30 phút = 1,5 giờ. Gọi vận tốc xe đạp của bạn Chiến là x (km/h, x 0 ) Vận tốc của ô tô là x 35 (km/h) Quãng đường bạn Chiến đi bằng xe đạp là: 7x (km) Quãng đường bạn Chiến đi bằng ô tô là: 1,5(x 35) (km) Do tổng quãng đường bạn Chiến đi là 180km nên ta có phương trình: 7x 1,5(x 35) 180 7x 1,5x 52,2 180 8,5x 127,5 x 15 (thỏa mãn) Vậy bạn Chiến đi bằng xe đạp với vận tốc là 15 km/h. Câu 2. (Tuyển sinh tỉnh Ninh Bình năm 2019-2020) Bác Bình gửi tiết kiệm 100 triệu đồng vào ngân hàng A, kì hạn một năm. Cùng ngày, bác gửi tiết kiệm 150 triệu đồng vào ngân hàng B, kì hạn một năm, với lãi suất cao hơn lãi suất của ngân hàng A là 1% / năm. Biết sau đúng 1 năm kể từ ngày gửi tiền. Bác Bình nhận được tổng sổ tiền lãi là 16.5 triệu đồng từ hai khoản tiền gửi tiết kiệm nêu trên. Hỏi lãi suất tiền gửi tiết kiệm kì hạn một năm của ngân hàng A là bao nhiêu phần trăm? Lời giải Gọi lãi suất gửi tiết kiệm kì hạn một năm của ngân hàng A là x% / năm. ( x 0 ) Thì lãi suất gửi tiết kiệm kì hạn một năm của ngân hàng B là x 1 % / năm. Tiền lãi bác Bình nhận được sau 1 năm gửi vào ngân hàng A là : 100x% (triệu đồng) Tiền lãi bác Bình nhận được sau 1 năm gửi vào ngân hàng B là : 150 x 1 % (triệu đồng) Tổng số tiền lãi bác Bình nhận được từ hai khoản tiết kiệm trên là 16,5 triệu đồng nên ta có phương trình : 100x% 150 x 1 % 16,5 100x 150x 150 1650 250x 1500 x 6 (thỏa mãn ) Vậy lãi suất tiền gửi tiết kiệm kì hạn một năm của ngân hàng A là 6% Câu 3. (Tuyển sinh tỉnh Ninh Bình năm 2019-2020) Trên một khúc sông với 2 bờ song song với nhau, có một chiếc đò dự định chèo qua sông từ vị trí A ở bở bên này sang vị trí B ở bờ bên kia, đường thẳng AB vuông góc với các bờ sông. Do bị dòng nước đẩy xiên nên chiếc đò đã cập bờ bên kia tại vị tri C cách B mội khoảng bằng 30 m. Biết khúc sông rộng 150 m, hỏi dòng nước đã đẩy chiếc đò lệch đi một góc có số đo bằng bao nhiêu? (kết quả làm tròn đến giây). Lời giải B 30m C 150m A Ta có hình vẽ :
- Ta có AB BC ABC vuông tại B AB 150 Do đó tan ·ACB 5 ·ACB 78041'24" BC 30 Vậy dòng nước đã đẩy chiếc đò đi lệch một góc có số đo bằng 900 78041'24" 11018'36" Câu 4. (Tuyển sinh tỉnh Quang Nam năm 2019-2020) Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ thực hiện đúng kế hoạch. Mỗi ngày sau đó, họ đều vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân đó làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau. Lời giải Gọi số sản phẩm mỗi ngày đội công nhân đó làm theo kế hoạch là x(sp).ĐK x 0;x Z Khi đó, số sản phẩm mỗi ngày đội công nhân đó làm trong thực tế là x 5 sp 250 Thời gian hoàn thành công việc theo kế hoạch là (ngày) x Số sản phẩm làm được trong 4 ngày đầu là: 4x sp Số sản phẩm còn lại phải làm là 250 4x sp 250 4x Thời gian làm 250 4x sp còn lại là (ngày). x 5 250 250 4x Theo bài toán ta có PT: 4 1 x x 5 Giải PT này ta được: x1 25 (nhận) x2 50 (loại) Vậy số sản phẩm mỗi ngày đội công nhân đó làm theo kế hoạch là 25 sản phẩm. Câu 5. (Tuyển sinh tỉnh Quảng Ninh năm 2019-2020) Hai người thợ cùng làm một công việc trong 9 ngày thì xong. Mỗi ngày, lượng công việc của người thợ thứ hai làm được nhiều gấp ba lần lượng công việc của người thợ thứ nhất. Hỏi nếu làm một mình thì mỗi người làm xong công việc đó trong bao nhiêu ngày Lời giải Gọi x (ngày), y (ngày) lần lượt là thời gian hoàn thành công việc một mình của người thứ nhất và người thứ hai, ( , ) ∈ ∗) 1 1 1 Do hai người cùng làm trong 9 ngày thì xong công việc nên: + = 9 (1) 1 3 Trong cùng một ngày người thứ hai làm được nhiều gấp ba lần người thứ nhất nên = (2) Từ (1) và (2) giải hệ tìm được x=36; y =12 (thỏa mãn). Vậy nếu làm một mình xong công việc người thứ nhất làm hết 36 ngày, người thứ hai làm hết 12 ngày. Câu 6. (Tuyển sinh tỉnh Sơn La năm 2019-2020) Trong kỳ thi tuyển sinh vào lớp 10 năm học 2019 2 – 2020, số thí sinh vào trường THPT chuyên bằng số thí sinh thi vào trường PTDT Nội 3 trú. Biết rằng tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi có đúng 24 thí sinh. Hỏi số thí sinh vào mỗi trường bằng bao nhiêu? Lời giải Gọi số thí sinh vào trường THPT Chuyên và số thí sinh vào trường PTDT Nội trú lần lượt là x , y (thí sinh) (điều kiện x > 0, y > 0)
- 2 Vì số thí sinh vào trường THPT Chuyên bằng số thí sinh vào trường PTDT Nội trú nên ta 3 2 có: x y (1) 3 Vì tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi có đúng 24 thí sinh nên tổng số thí sinh của cả hai trường là: 24.80 = 1920 (thí sinh) Do đó ta có phương trình; x + y = 1920 (2) Từ (1) và (2) ta có hệ phương trình 2 2 2 x y x y x y 3 3 y 1152 3 2 5 x 768 x y 1920 y y 1920 y 1920 3 3 Đối chiếu điều kiện ta thấy x = 768; y = 1152 đều thỏa mãn. Vậy số thí sinh vào trường THPT Chuyên và số thí sinh vào trường PTDT Nội trú lần lượt là 768 thí sinh , 1152 thí sinh. Câu 7. (Tuyển sinh tỉnh THUA THIEN HUE năm 2019-2020) Hưởng ứng Ngày Chủ nhật xanh do UBND tỉnh phát động với chủ đề “Hãy hành động để Thừa Thiên Huế thêm Xanh, Sạch, Sáng”, một trường THCS đã cử học sinh của hai lớp 9A và 9B cùng tham gia làm tổng vệ sinh một 35 con đường, sau giờ thì làm xong công việc. Nếu làm riêng từng lớp thì thời gian học sinh 12 lớp 9A làm xong công việc ít hơn thời gian học sinh lớp 9B là 2 giờ. Hỏi nếu mỗi lớp làm riêng thì sau bao nhiêu giờ sẽ làm xong công việc? Lời giải 35 Gọi thời gian lớp 9A làm một mình xong công việc là x (giờ) x 12 Gọi thời gian lớp 9B làm một mình xong công việc là y (giờ) y 2 1 Mỗi giờ lớp 9A làm được phần công việc là: (công việc) x 1 Mỗi giờ lớp 9B làm được phần công việc là: (công việc) y 1 1 Mỗi giờ lớp cả hai ớp 9A, 9B làm được phần công việc là: (công việc) x y 35 Theo đề bài, hai lớp cùng làm chung công việc trong giờ thì xong công việc nên ta có 12 1 1 35 1 1 12 phương trình: 1: (1) x y 12 x y 35 Nếu làm riêng từng lớp thì thời gian học sinh lớp 9A làm xong công việc ít hơn thời gian lớp 9B là 2 giờ nên ta có phương trình: y x 2 (2) Thế phương trình (2) vào phương trình (1) ta được: 1 1 12 (1) 35(x 2) 35x 12x(x 2) x x 2 35 35x 70 35x 12x2 24x 12x2 46x 70 0 12x2 60x+14x 70 0 12x(x 5) 14(x 5) 0
- (x 5)(12x 14) 0 x 5 (tm) x 5 0 7 12x 14 0 x (Ktm) 6 Vậy nếu làm một mình thì lớp 9A làm xong công việc trong 5 giờ, lớp 9B làm xong công việc trong 5 2 7 giờ Câu 8. (Tuyển sinh tỉnh Thành Phố HCM năm 2019-2020) Quy tắc sau đây cho ta biết được ngày thứ n , tháng t , năm 2019 là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức T n H , ở đây H được xác định bởi bảng sau: Tháng t 8 2; 3; 11 6 9; 12 4; 7 1; 10 5 H 3 2 1 0 1 2 3 Sau đó, lấy T chia cho 7 ta được số dưr (0 r 6) . Nếu r 0 thì ngày đó là ngày thứ Bảy. Nếu r 1 thì ngày đó là ngày Chủ Nhật. Nếu r 2 thì ngày đó là ngày thứ Hai. Nếu r 3 thì ngày đó là ngày thứ Ba. Nếu r 6 thì ngày đó là ngày thứ Sáu. Ví dụ: Ngày 31/ 12 / 2019có n 31,t 12,H 0 T n H 31 0 31. Số 31 chia cho 7 có số dư là 3 nên ngày đó là thứ Ba. a. Em hãy sử dụng quy tắc trên để xác định các ngày 02 / 09 / 2019 và 20 / 11/ 2019 là ngày thứ mấy? b. Bạn Hằng tổ chức sinh nhật của mình trong tháng 10 / 2019 . Hỏi ngày sinh nhật của Hằng là ngày mấy? Biết rằng ngày sinh nhật của Hằng là một bội số của 3 và là thứ Hai. Lời giải a. Ngày 02 / 09 / 2019 , có n 2, t 9,H 0 . Do đó T n H 2 0 2. Số 2 chia cho 7 có số dư là 2 nên ngày này là thứ Hai. Ngày 20 / 11/ 2019 có n 20, t 11,H 2. Do đó T n H 20 2 18. Số 18 chia cho 7 có số dư là 4 nên ngày này là thứ Tư. b. Do ngày sinh nhật của Hằng là vào thứ Hai nên r 2. Do đó T 7q 2. Mặt khác T n 2 n T 2 7q 2 2 7q . Biện luận q 1 2 3 4 5 n 7 14 21 28 35 Do n là bội của 3 nên chọn n 21. Vậy sinh nhật của ngày vào ngày 21/ 10 / 2019. Câu 9. (Tuyển sinh tỉnh Thành Phố HCM năm 2019-2020) Một nhóm gồm 31 học sinh tổ chức một chuyến du lịch (chi phí chuyến đi được chia đều cho các bạn tham gia). Sau khi đã hợp đồng xong, vào giờ chót có 3 bạn bận việc đột xuất không đi được nên họ không đóng tiền. Cả nhóm thống nhất mỗi bạn còn lại sẽ đóng thêm 18000 đồng so với dự kiến ban đầu để bù lại cho 3 bạn không tham gia. Hỏi tổng chi phí mỗi chuyến đi là bao nhiêu? Lời giải Số tiền cả lớp phải đóng bù: 31 3 18.000 504.000ngàn Số tiền mỗi học sinh phải đóng: 504.000 3 168.000ngàn Tổng chi phí ban đầu là: 168.000 31 5.208.000 ngàn Câu 10. (Tuyển sinh tỉnh Thành Phố HCM năm 2019-2020) Bạn Dũng trung bình tiêu thụ 15 ca-lo cho mỗi phút bơi và 10 ca-lo cho mỗi phút chạy bộ. Hôm nay, Dũng mất 1,5 giờ cho cả hai
- hoạt động trên và tiêu thụ hết 1200 ca-lo. Hỏi hôm nay, bạn Dũng đã mất bao nhiêu thời gian cho mỗi hoạt động này? Lời giải Đổi: 1,5 giờ = 90 phút. Gọi x (phút) là thơi gian Dũng bơi y (phút) là thời gian Dũng chạy bộ Theo giải thiết ta có hệ phương trình : 15x 10y 1200 x 60 x y 90 y 30 Vậy Dũng mất 60 phút để bơi và 30 phút để chạy bộ để tiêu thụ hết 1200 ca-lo. Câu 11. (Tuyển sinh tỉnh Thái Bình năm 2019-2020) Một mảnh vườn hình chữ nhật có diện tích 150m2 . Biết rằng, chiều dài mảnh vườn hơn chiều rộng mảnh vườn là 5m . Tính chiều rộng mảnh vườn. Lời giải Gọi x , y lần lượt là chiều dài, chiều rộng của mảnh vườn, điều kiện x 0 y 0 , x y . x y 5 x y 5 Có xy 150 y y 5 150 1 y 10 nhaän 1 y2 5y 150 0 . y 15 loaïi Vậy chiều rộng mảnh vườn là 10 m Câu 12. (Tuyển sinh tỉnh Thái Nguyên năm 2019-2020) Một địa phương cấy 10ha giống lúa loại I và 8ha giống lúa loại II. Sau một mùa vụ, địa phương đó thu hoạch và tính toán sản lượng thấy: + Tổng sản lượng của hai giống lúa thu về là 139 tấn; + Sản lượng thu về từ 4ha giống lúa loại I nhiều hơn sản lượng thu về từ 3ha giống lúa loại II là 6 tấn. Hãy tính năng suất lúa trung bình ( đơn vị: tấn/ ha) của mỗi loại giống lúa. Lời giải Gọi năng suất lúa trung bình của loại I là x ( 0 < x < 139) Gọi năng suất lúa trung bình của loại II là y (0 < y < 139) Theo bài ra ta có hệ phương trình 10 + 8 = 139 = 7,5 4 ― 3 = 6 ↔ = 8 Vậy năng suất lúa trung bình của loại I là: 7,5 (tấn / ha) Vậy năng suất lúa trung bình của loại II là: 8 (tấn / ha) Câu 13. (Tuyển sinh tỉnh TS10-20-PHU THO năm 2019-2020) Lớp 9A và lớp 9B của một trường THCS dự định làm 90 chiếc đèn ông sao để tặng các em thiếu nhi nhân dịp Tết Trung Thu. Nếu lớp 9A làm trong 2 ngày và lớp 9B làm trong 1 ngày thì được 23 chiếc đèn; nếu lớp 9A làm trong 1 ngày và lớp 9B làm trong 2 ngày thì được 22 chiếc đèn. Biết rằng số đèn từng lớp làm được
- trong mỗi ngày là như nhau, hỏi nếu cả hai lớp cùng làm thì hết bao nhiêu ngày để hoàn thành công việc đã dự định ? Lời giải Gọi số đèn mà lớp 9A, lớp 9B làm được trong 1 ngày lần lượt là x, y (x, y ¥ ) . 2x y 23 Theo bài ra ta có hệ phương trình . x 2y 22 x 8 Giải hệ phương trình trên ta thu được . y 7 Suy ra trong một ngày cả 2 lớp làm được 8 7 15 chiếc đèn. 90 Vậy nếu cả 2 lớp cùng làm thì hết 6 ngày sẽ xong công việc đã dự định. 15 Câu 14. (Tuyển sinh tỉnh Tây Ninh năm 2019-2020) Hai ô tô khởi hành cùng một lúc từ A đến B . Vận tốc của ô tô thứ nhất lớn hơn vận tốc của ô tô thứ hai là 10 km/h nên ô tô thứ nhất 1 đến B trước ô tô thứ hai giờ. Tính vận tốc mỗi ô tô biết quãng đường AB dài 150 km. 2 Lời giải Gọi x km/h là vận tốc ô tô thứ nhất. Điều kiện x 10 Khi đó vận tốc ô tô thứ hai là x 10 km/h 150 1 150 Từ giả thiết ta có x 2 x 10 2 x 60 x 10x 3000 0 x 50 Do x 10 nên nhận x 60. Vậy vận tốc của ô tô thứ nhất là 60 km/h và vận tốc của ô tô thứ hai là 50 km/h Câu 15. (Tuyển sinh tỉnh Tây Ninh năm 2019-2020) An đếm số bài kiểm tra một tiết đạt điểm 9 và điểm 10của mình thấynhiều hơn16 bài. Tổng số điểm của tất cả các bài kiểm tra đạt điểm 9 và điểm 10 đó là 160. Hỏi An được bao nhiêu bài điểm 9 và bao nhiêu bài điểm 10? Lời giải Gọi số bài điểm 9 và điểm 10của An đạt được lần lượt là x,y (bài)(x,y Î ¥ ). Theo giả thiết x + y > 16 . Vì tổng số điểm của tất cả các bài kiểm tra đó là 160 nên 9x + 10y = 160 . 160 Ta có 160 = 9x + 10y ³ 9(x + y) Þ x + y £ . 9 160 Do x + y Î ¥ và 16 < x + y £ nên x + y = 17 . 9 ì ì ì ï x + y = 17 ï x = 17- y ï x = 10 Ta có hệ í Û íï Û í (thỏa mãn). ï 9x + 10y = 160 ï 9 17 - y + 10y = 160 ï y = 7 îï îï ( ) îï Vậy An được 10bài điểm 9 và 7 bài điểm 10. Câu 9: Câu 16. (Tuyển sinh tỉnh Vĩnh Long năm 2019-2020) Một công ty vận tải dự định dùng loại xe lớn để vận chuyển 20 tấn hàng hóa theo một hợp đồng. Nhưng khi vào việc, công ty không còn xe lớn nên phải thay bằng những xe nhỏ. Mỗi xe nhỏ vận chuyển được khối lượng ít hơn 1
- lần so với mỗi xe lên theo dự định. Để đảm bảo thời gian đã hợp đồng, công ty phải dùng một số lượng xe nhiều hơn số xe dự định là 1 xe. Hỏi mỗi xe nhỏ vận chuyển bao nhiêu tấn hàng hóa? (Biết các xe cùng loại thi có khối lượng vận chuyển như nhau). Lời giải Gọi số tấn hàng hóa mỗi xe nhỏ vận chuyển được là: x (tấn) (x >0) Mỗi xe lớn vận chuyển được số tấn hàng là: x+1 (tấn) 20 Khi đó số xe nhỏ dự định phải dùng để chở hết 20 tấn hàng hóa là: (xe). x 20 Số xe lớn dự định phải dùng để chở hết 20 tấn hàng hóa là: (xe) x 1 Vì thực tế số xe nhỏ phải dùng nhiều hơn dự định là 1 xe. 20 20 Nên ta có phương trình: 1 x x 1 Giải phương trình: 20 20 1 1 1 20 1 x x 1 x x 1 1 1 1 x 1 x 1 x x 1 20 x(x 1) 20 1 1 x(x 1) 20 x(x 1) 20 x2 x 20 0 (x 5)(x 4) 0 x 5 0 x 5(ktm) x 4 0 x 4(tm) Vậy mỗi xe nhỏ vận chuyển được 4 tấn hàng hóa. Câu 17. (Tuyển sinh tỉnh Vĩnh Phúc năm 2019-2020) Người thứ nhất đi đoạn đường từ địa điểm A đến địa điểm B cách nhau 78km. Sau khi người thứ nhất đi được 1 giờ thì người thứ hai đi theo chiều ngược lại vẫn trên đoạn đường đó từ B về A. Hai người gặp nhau ở địa điểm C cách B một quãng đường 36km. Tính vận tốc của mỗi người, biết rằng vận tốc của người thứ hai lớn hơn vận tốc của người thứ nhất là 4km/h và vận tốc của mỗi người trong suốt đoạn đường là không thay đổi. Lời giải Gọi vận tốc của người thứ nhất là x (km / h)(Đk: x > 0) Khi đó, vận tốc của người thứ hai là x + 4(km / h) 78- 36 42 Thời gian người thứ nhất đi từ A đến C là: = (giôø) x x 36 Thời gian người thứ hai đi từ B đến C là: (giôø) x + 4 Do người thứ nhất đi trước người thứ hai 1 giờ, nên khi hai người gặp nhau tại C thì ta có phương trình: 42 36 - = 1 (1) x x + 4 Giải phương trình (1) và kết hợp với ĐK x > 0 , ta được: x = 14 (km / h) Vậy, vận tốc của người thứ nhất là 14 (km/h) và vận tốc của người thứ hai là 14 + 4 = 18 (km/h) Câu 18. (Tuyển sinh tỉnh An Giang năm 2019-2020) (An Giang)
- Hội Âm h nhạc ọ a Yêu t Thể h t Trường Aí tiến hành khảo sát 1500 học sinhh về sự yêu thích hội hoạ, thể thao, âm nhạc và các yêu thíchc khác. Mỗi học sinh chỉ chọn một ayêu thích. Biết số học sinh yêu thích hội họa chiếm tỉ lê ̣20%hso với số học sinh khảo sát. o Số học sinhk yêu thích thể thao hơn số học sinh yêu thích âm nhạc là 30 học sinh; số học sinh yêu thíchh thể thao và hội họa bằng với số học sinh yêu thích âm nhạc và yêu thích khác. a)Tính sốá học sinh yêu thích hội họa. b)Hỏi tổngc số học sinh yêu thích thể thao và âm nhạc là bao nhiêu? Lời giải Số học sinh yêu thích hội họa chiếm 20% số học sinh toàn trường nên số học sinh yêu thích hội họa là 1500.20% 300 học sinh Gọi số học sinh yêu thích thể thao, âm nhạc và yêu thích khác lần lượt là a; b; c Ta có a b c 300 1500 a b c 1200 (1) Số học sinh yêu thích thể thao và hội họa bằng với số học sinh yêu thích âm nhạc và yêu thích khác nên a 300 b c (2) Số học sinh yêu thích thể thao hơn số học sinh yêu thích âm nhạc là 30 nên ta được a b 30 (3) (Tìm các mối quan hệ giữa các biến) Thay (2) vào phương trình (1) ta được a a 300 1200 a 450 Thay vào phương trình (3) b 420 Vậy tổng số học sinh yêu thích thể thao và âm nhạc là a b 870 (học sinh có thể lập hệ phương trình rồi giải bằng máy tính) Câu 19. (Tuyển sinh tỉnh BA RIA VT năm 2019-2020) Có một vụ tai nạn ở vị trí B tại chân của một ngọn núi (chân núi có dạng đường tròn tâm O, bán kính 3 km) và một trạm cứu hộ ở vị trí A (tham khảo hình vẽ). Do chưa biết đường đi nào để đến vị trí tai nạn nhanh hơn nên đội cứu hộ quyết định điều hai xe cứu thương cùng xuất phát ở trạm đến vị trí tai nạn theo hai cách sau: Xe thứ nhât : đi theo đường thẳng từ A đến B, do đường xấu nên vận tốc trung bình của xe là 40 km/h. Xe thứ hai: đi theo đường thẳng từ A đến C với vận tốc trung bình 60 km/h, rồi đi từ C đến B theo đường cung nhỏ CB ở chân núi với vận tốc trung bình 30 km/h ( 3 điểm A, O, C thẳng hàng và C ở chân núi). Biết đoạn đường AC dài 27 km và A· BO 900 . a) Tính độ dài quãng đường xe thứ nhất đi từ A đến B.
- b) Nếu hai xe cứu thương xuất phát cùng một lúc tại A thì xe nào thì xe nào đến vị trí tai nạn trước ? O C A B Chân núi Lời giải a) OA = AC + R = 27 + 3 = 30 km Xét ABO vuông tại B, có: AB OA2 OB2 302 32 9 11 km 9 11 b) t/gian xe thứ nhất đi từ A đến B là: 0.75 (giờ) 40 27 t/gian xe thứ hai đi từ A đến C là: 0.45 (giờ) 60 Xét ABO vuông tại B, có: AB 9 11 tanOµ Oµ 84.30 OB 3 3. .84,3 Độ dài đoạn đường từ C đến B là l 4,41 km C»B 180 4,41 T/gian đi từ C đến B là : 0,15 giờ 30 Suy ra thời gian xe thứ hai đi từ A đến B là : 0,45 + 0,15 = 0,6 giờ Vậy xe thứ hai đến điểm tai nạn trước xe thứ nhất. Câu 20. (Tuyển sinh tỉnh Bình Dương năm 2019-2020)Một tổ công nhân theo kế hoạch phải làm 140 sản phẩm trong một thời gian nhất định. Nhưng khi thực hiện năng suất của tổ đã vượt năng suất dự định là 4 sản phẩm mỗi ngày. Do đó tổ đã hoàn thành công việc sớm hơn dự định 4 ngày. Hỏi thực tế mỗi ngày tổ đã làm được bao nhiêu sản phẩm. Lời giải Phương pháp: Gọi số sản phẩm thực tế mỗi ngày tổ công nhân sản xuất được là x (sản phẩm) ( x ¥ *, x 4 ) Dựa vào các giả thiết bài cho để biểu diễn số sản phẩm tổ công nhân sản xuất theo kế hoạch và thời gian tổ hoàn thành sản phẩm theo kế hoạch và theo thực tế. Lập phương trình và giải phương trình. Đối chiếu với điều kiện của ẩn rồi kết luận. Cách giải: Gọi số sản phẩm thực tế mỗi ngày tổ công nhân sản xuất được là x (sản phẩm) ( x ¥ *, x 4 ) 140 Thời gian thực tế mà tổ công nhân hoàn thành xong 140 sản phẩm là: (ngày). x Theo kế hoạch mỗi ngày tổ công nhân đó sản xuất được số sản phẩm là: x 4 (sản phẩm)
- 140 Thời gian theo kế hoạch mà tổ công nhân hoàn thành xong 140 sản phẩm là: x 4 ngày. Theo đề bài ta có thời gian thực tế hoàn thành xong sớm hơn so với thời gian dự định là 4 ngày nên ta có phương trình: 140 140 4 x 4 x 140x 140 x 4 4x x 4 35x 35 x 4 x x 4 35x 35x 140 x2 4x x2 4x 140 0 x2 14x 10x 140 0 x x 14 10 x 14 0 x 10 x 14 0 x 10 0 x 10 ktm x 14 0 x 14 tm Vậy thực tế mỗi ngày tổ công nhân đã làm được14 sản phẩm. Chú ý: Nếu bạn học sinh nào gọi số sản phẩm tổ công nhân dự định làm trong 1 ngày thì sau khi giải phương trình, ta cần tìm số sản phẩm tổ công nhân làm được theo kế hoạch rồi mới kết luận. Câu 21. (Tuyển sinh tỉnh Bình Phước năm 2019-2020) Nông trường cao su Minh Hưng phải khai thác 260 tấn mũ trong một thời gian nhất định. Trên thực tế, mỗi ngày nông trường đều khai thác vượt định mức 3 tấn. Do đó, nông trường đã khai thác được 261 tấn và song trước thời hạn 1 ngày. Hỏi theo kế hoạch mỗi ngày nông trường khai thác được bao nhiêu tấn mũ cao su. Lời giải Nông trường cao su Minh Hưng phải khai thác 260 tấn mũ trong một thời gian nhất định. Trên thực tế, mỗi ngày nông trường đều khai thác vượt định mức 3 tấn. Do đó, nông trường đã khai thác được 261 tấn và song trước thời hạn 1 ngày. Hỏi theo kế hoạch mỗi ngày nông trường khai thác được bao nhiêu tấn mũ cao su. Lời giải Gọi số tấn mũ cao su mỗi ngày nông trường khai thác được là x (tấn) (Điều kiện: 0 x 260 ) 260 Thời gian dự định khai thác mũ cao su của nông trường là: (ngày) x Trên thực tế, mỗi ngày nông trường khai thác được: x 3 (tấn) 261 Thời gian thực tế khai thác mũ cao su của nông trường là: (ngày) x 3 261 260 Theo đề bài, ta có phương trình: 1 x 3 x